聚类分析依赖的因素 聚类分析目的在于


聚类分析通常选择以下哪些因素作为分类依据

聚类分析的特点

聚类分析依赖的因素 聚类分析目的在于聚类分析依赖的因素 聚类分析目的在于


聚类分析依赖的因素 聚类分析目的在于


聚类分析依赖的因素 聚类分析目的在于


聚类分析(cluster ysis)是根据事物本身的特性研究个体的一种方法,目的在于将相似的事物归类.它的原则是同一类中的个体有较大的相似性,不同类的个体异性很大.这种方法有三个特征:适用于没有先验知识的分类.如果没有这些事先的经验或一些、国内、行业标准,分类便会显得随意和主观.这时只要设定比较完善的分类变量,就可以通过聚类分析法得到较为科学合理的类别;可以处理多个变量决定的分类.例如,要根据消费者购买量的大小进行分类比较容易,但如果在进行数据挖掘时,要求根据消费者的购买量、家庭收入、家庭支出、年龄等多个指标进行分类通常比较复杂,而聚类分析法可以解决这类问题;聚类分析法是一种探索性分析方法,能够分析事物的内在特点和规律,并根据相似性原则对事物进行分组,是数据挖掘中常用的一种技术.

这种较成熟的统计学方法如果在市场分析中得到恰当的应用,必将改善市场营销的效果,为决策提供有益的参考.其应用的步骤为:将市场分析中的问题转化为聚类分析可以解决的问题,利用相关(如SPSS、SAS等)求得结果,由专家解读结果,并转换为实际作措施,从而提高利润,降低成本.

2.应用范围

聚类分析在客户细分中的应用 消费同一种类的商品或服务时,不同的客户有不同的消费特点,通过研究这些特点,可以制定出不同的营销组合,从而获取的消费者剩余,这就是客户细分的主要目的.常用的客户分类方法主要有三类:经验描述法,由决策者根据经验对客户进行类别划分;传统统计法,根据客户属性特征的简单统计来划分客户类别;非传统统计方法,即基于人工智能技术的非数值方法.聚类分析法兼有后两类方法的特点,能够有效完成客户细分的过程.

例如,客户的购买动机一般由需要、认知、学习等内因和文化、、家庭、小群体、参考群体等外因共同决定.要按购买动机的不同来划分客户时,可以把前述因素作为分析变量,并将所有目标客户每一个分析变量的指标值量化出来,再运用聚类分析法进行分类.在指标值量化时如果遇到一些定性的指标值,可以用一些定性数据定量化的方法加以转化,如模糊评价法等.除此之外,可以将客户满意度水平和重复购买机会大小作为属性进行分类;还可以在区分客户之间异性的问题上纳入一套新的分类法,将客户的异性变量划分为五类:产品利益、客户之间的相互作用力、选择障碍、议价能力和收益率,依据这些分析变量聚类得到的归类,可以为制定营销决策提供有益参考.

以上分析的共同点在于都是依据多个变量进行分类,这正好符合聚类分析法解决问题的特点;不同点在于从不同的角度寻求分析变量,为某一方面的决策提供参考,这正是聚类分析法在客户细分问题中运用范围广的体现. 聚类分析在实验市场选择中的应用

实验调查法是市场调查中一种有效的一手资料收集方法,主要用于市场销售实验,即所谓的市场测试.通过小规模的实验性改变,以观察客户对产品或服务的反应,从而分析该改变是否值得在大范围内推广.

实验调查法最常用的领域有:市场饱和度测试.市场饱和度反映市场的潜在购买力,是市场营销战略和策略决策的重要参考指标.通常通过将消费者购买产品或服务的各种决定因素(如价格等)降到限度的方法来测试市场饱和度.或者在出现滞销时,投放类似的新产品或服务到特定的市场,以测试市场是否真正达到饱和,是否具有潜在的购买力.前述两种措施由于利益和风险的原因,不可能在覆盖的所有市场中实施,只能选择合适的实验市场和对照市场加以测试,得到近似的市场饱和度;产品的价格实验.这种实验往往将新定价的产品投放市场,对顾客的态度和反应进行测试,了解顾客对这种价格的是否接受或接受程度;新产品上市实验.波士顿矩阵研究的产品生命周期图表明,为了生存和发展往往要不断开发新产品,并使之向明星产品和金牛产品渡.然而新产品投放市场后的失败率却很高,大致为66%到90%.因而为了降低新产品的失败率,在产品大规模上市前,运用实验调查法对新产品的各方面(外观设计、性能、广告和推广营销组合等)进行实验是非常有必要的.

在实验调查方法中,最常用的是前后单组对比实验、对照组对比实验和前后对照组对比实验.这些方法要求科学的选择实验和非实验单位,即随机选择出的实验单位和非实验单位之间必须具备一定的可比性,两类单位的主客观条件应基本相同.

通过聚类分析,可将待选的实验市场(商场、居民区、城市等)分成同质的几类小组,在同一组内选择实验单位和非实验单位,这样便保证了这两个单位之间具有了一定的可比性.聚类时,商店的规模、类型、设备状况、所处的地段、管理水平等就是聚类的分析变量

聚类分析的定义

依据研究对象(样品或指标)的特征,对其进行分类的方法,减少研究对象的数目。

各类事物缺乏可靠的历史资料,无法确定共有多少类别,目的是将性质相近事物归入一类。

各指标之间具有一定的相关关系。

聚类分析(cluster ysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术。

聚类分析区别于分类分析(classification ysis) ,后者是有监督的学习。

变量类型:定类变量、定量(离散和连续)变量 1,层次聚类(Hierarchical Clustering)

合并法、分解法、树状图

2. 非层次聚类

划分聚类、谱聚类

聚类方法特征: 聚类分析简单、直观。

聚类分析主要应用于探索性的研究,其分析的结果可以提供多个可能的解,选择最终的解需要研究者的主观判断和后续的分析; 不管实际数据中是否真正存在不同的类别,利用聚类分析都能得到分成若干类别的解; 聚类分析的解完全依赖于研究者所选择的聚类变量,增加或删除一些变量对最终的解都可能产生实质性的影响。

研究者在使用聚类分析时应特别注意可能影响结果的各个因素。

异常值和特殊的变量对聚类有较大影响当分类变量的测量尺度不一致时,需要事先做标准化处理。

当然,聚类分析不能做的事情是:自动发现和告诉你应该分成多少个类——属于非监督类分析方法

期望能很清楚的找到大致相等的类或细分市场是不现实的;

样本聚类,变量之间的关系需要研究者决定;

不会自动给出一个聚类结果;

我这里提到的聚类分析主要是谱系聚类(hierarchical clustering)和快速聚类(K-means)、两阶段聚类(Two-Step);

根据聚类变量得到的描述两个个体间(或变量间)的对应程度或联系紧密程度的度量。

可以用两种方式来测量:1、采用描述个体对(变量对)之间的接近程度的指标,例如“距离”,“距离”越小的个体(变量)越具有相似性。

2、采用表示相似程度的指标,例如“相关系数”,“相关系数”越大的个体(变量)越具有相似性。

计算聚类——距离指标D(distance)的方法非常多:按照数据的不同性质,可选用不同的距离指标。

欧氏距离(Euclidean distance)、欧氏距离的平方(Squared Euclidean distance)、曼哈顿距离(Block)、切比雪夫距离(Chebychev distance)、卡方距离(Chi-Square measure) 等;相似性也有不少,主要是皮尔逊相关系数了! 聚类变量的测量尺度不同,需要事先对变量标准化; 聚类变量中如果有些变量非常相关,意味着这个变量的权重会更大 欧式距离的平方是最常用的距离测量方法; 聚类算法要比距离测量方法对聚类结果影响更大; 标准化方法影响聚类模式: 变量标准化倾向产生基于数量的聚类; 样本标准化倾向产生基于模式的聚类; 一般聚类个数在4-6类,不易太多,或太少; 群重心

群中心

群间距离 定义问题与选择分类变量

聚类方法

确定群组数目

聚类结果评估

结果的描述、解释 属于非层次聚类法的一种

(1)执行过程

初始化:选择(或人为指定)某些记录作为凝聚点

循环:

按就近原则将其余记录向凝聚点凝集

计算出各个初始分类的中心位置(均值)

用计算出的中心位置重新进行聚类

如此反复循环,直到凝聚点位置收敛为止

(2)方法特点

通常要求已知类别数

可人为指定初始位置

节省运算时间

样本量大于100时有必要考虑

只能使用连续性变量 特点:

处理对象:分类变量和连续变量

自动决定分类数

快速处理大数据集

前提设:

变量间彼此

分类变量服从多项分布,连续变量服从正态分布

模型稳健 步:逐个扫描样本,每个样本依据其与已扫描过的样本的距离,被归为以前的类,或生成一个新类

第二步,对步中各类依据类间距离进行合并,按一定的标准,停止合并

判别分析 Discriminant Analysis

介绍: 判别分析

分类学是人类认识世界的基础科学。

聚类分析和判别分析是研究事物分类的基本方法,广泛地应用于自然科学、科学、工农业生产的各个领域。

判别分析DA

概述

DA模型

DA有关的统计量

两组DA

案例分析

判别分析

判别分析是根据表明事物特点的变量值和它们所属的类,求出判别函数。

根据判别函数对未知所属类别的事物进行分类的一种分析方法。

核心是考察类别之间的异。

判别分析

不同:判别分析和聚类分析不同的在于判别分析要求已知一系列反映事物特征的数值变量的值,并且已知各个体的分类。

DA适用于定类变量(因)、任意变量(自)

两类:一个判别函数;

多组:一个以上判别函数

DA目的

建立判别函数

检查不同组之间在有关预测变量方面是否有显著异

决定哪个预测变量对组间异的贡献

根据预测变量对个体进行分类

影响聚类算法结果的主要因素

影响聚类算法结果的主要因素是极端值。

聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法,同时也是数据挖掘的一个重要算法。聚类(Cluster)分析是由若干模式(Pattern)组成的,通常,模式是一个度量(Measurement)的向量,或者是空间中的一个点。

聚类分析以相似性为基础,在一个聚类中的模式之间比不在同一聚类中的模式之间具有更多的相似性。俗话说:"物以类聚,人以群分",在自然科学和科学中,存在着大量的分类问题。所谓类,通俗地说,就是指相似元素的。

聚类分析起源于分类学,在古老的分类学中,人们主要依靠经验和专业知识来实现分类,很少利用数学工具进行定量的分类。

随着人类科学技术的发展,对分类的要求越来越高,以致有时仅凭经验和专业知识难以确切地进行分类,于是人们逐渐地把数学工具引用到了分类学中,形成了数值分类学,之后又将多元分析的技术引入到数值分类学形成了聚类分析。

影响聚类算法效果的主要因素有哪些

当然是敏感的,跟程序中如何处理数据有很大的关系.比如两个中心点(-1,0)(1,0),这时读入数据(0,0),那么程序计算与所有中心点的距离,因为距离相同,程序会给其中一个,至于给哪个,都是由程序决定,一般按数据存储的先后顺序来给.而且结果不同不能代表聚类结果,而是说明结果的多样化,本身K的选取就是没有一个约定的方法,所以结果有别也是理所当然的.关键是你要如何体现你的算法的优越性.就是要跟别的算法作比较,比如从算法的空间、时间复杂度,算法的运行处理速度等等因素来做比较.

16种常用的数据分析方法-聚类分析

分类时,要综合考虑其性别、年龄、收入、职业、兴趣、生活方式等相关信息,通过使用特定的方法,发现隐藏在这些信息背后的特征,将其分成几个类别,每一个类别具有一定的共性,进而做出进一步的探索研究。这个分类的过程,就是聚类分析。

聚类分析(2)聚类技术

系列文章: 聚类分析(1)之市场细分

聚类分析方法分为快速聚类和系统聚类(层次聚类)。快速聚类spss使用的是K-means聚类算法。该聚类方法需要指定聚类数量,通常我们需要多次尝试并分析多少个类合适。聚类分析适合大样本量情况。样本个数超过500,变量数超过50(并不是强制的)。

聚类分析数据类型为数值型,非数值型变量需要做转换,二分类变量(0,1)可以参与聚类分析。聚类多数适用于连续变量,分类变量适用对应分析。

聚类分析对极端值敏感,同时变量数据的量纲也会影响到聚类结果,需要做标准化处理。

结果依赖于次初始分类,聚类中绝大多数重要变化均发生在次分配中。

聚类分析中,关于分类时,一种是利用相似系数,性质越接近的,相似系数就越接近1或者-1,通过此来确定归类。另一种是利用空间距离,将每一个点看做m维空间上的一个点,并在空间中定义距离。

在spss中可以设定迭代次数。

来自《Python数据科学:技术详解与商业实践》。聚类效果的评估基于结果的可解释性,通常需要多次聚类才能找到合适的分类。

数据包含6个变量(字段),除了客户编号为名义变量外,其他都是连续变量。

不论什么做什么数据分析,步就是查看原始数据的分布,这里应该查看一下各变量的数据分布状态:均值,极大极小值,方,缺失情况。

通过spss分析-描述

可以看出1.量纲异较大。2极大极小值组距很大。从这方面可以讲,我们需要做标准化处理。先尝试不做标准化处理。

通过业务知识等,决定先设定5个细分人群,后面可以再尝试4和6。

先做标准化处理:spss分析-描述。在左下角中有一个“将标准化值另存为变量”,标准化为Z分数。确定后会生成新的标准化后的变量。

对标准化后的变量聚类:分析-分类-K-means

选择迭代次数同时将分类结果存在表中。

默认迭代次数是10次,迭代次数过少,可能已经迭代完了仍无法收敛,所以需要增加迭代次数。将分类结果保存在表中,是指对每个样本标注被分到哪一类了。这一步的目的是为了后续通过其他方法(比如比较均值)来看5类人群之间的异。停

输出4个表格,都是经过标准化处理的。主要查看是否已经迭代收敛。然后下一步就是做均值比较等,目的是查看5类人群是否有异,分类是否合理。同时还可以在对4和6类人群试做分类。聚类分析无法检验标准,

通过比较均值,可以了解5类人群之间的异

输出的结果

从结果中可以看出

类:高端商用客户,总通话时间长,工作日上班时间通话比例高

第二类:少使用低端客户,总通话时间短,各时段通话时间都短

第三类:中端商用客户,总通话时间居中,工作日上班时间通话比例高

第四类:中端日常用客户,总通话时间居中,工作日下班时间通话比例高

第五类:长聊客户,每次通话时间长

松江招工的纸箱厂 松江包装厂
上一篇
申请跨境电商哪个好_做跨境电商哪家公司
下一篇
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 836084111@qq.com ,一经查实,本站将立刻删除。

相关推荐